The geology and wildlife importance of Leziate Parish

Ash Murray (W.Norfolk Reserves Manager)

- Geology and soils
- Hydrology
- Species & habitats

as Mr.

• Future

- Hydrology surface flows (volumes, frequency of flows, chemical properties)
- **Soil types** physical and chemical characteristics
- Habitats and species environmental niches
- Vernacular architecture as mini-exposures provide location-specific habitats

Geological connectivity within the landscape

- Corridors of similar soils and hydrological conditions for species and habitats to spread **along.**
- Provide ecological resilience – spreading room for species to shift across environmental gradients e.g. to wetter areas in times of drought.

Bedrock geology of East and South East England. <u>www.geologyviewer.bgs.ac.uk</u>

Geologically defined population distributions – a heathland specialist

ALL MAN

Bedrock geology of East and South East England. <u>www.geologyviewer.bgs.ac.uk</u>

NBN Atlas, Map data C OpenStreetMap, imagery CartoDB

Norfolk's bedrock geology

Norfolk Wildlife Trust

- All Norfolk's bedrock is sedimentary
- Strata dip gently to east
- Strata get progressively younger as one travels east
- Physical and chemical properties of strata are very different
- Massive influence on habitats and species

All strange and the second strange

www.geologyviewer.bgs.ac.uk

Norfolk's superficial geology

• Youngest deposits

6

- Variable depth, consistency and composition
- Locally impact hydrology and soils
- Add complexity to species & habitat distributions

All man A a share Mall

www.geologyviewer.bgs.ac.uk

Rainfall

Carstone

Effects of Geology on Hydrology – Greensand aquifer

LESING Beds Member (Sandringham Sands Formation)

- Sands and sandstones free-draining, low pH, nutrient poor •
- Mudstones (Snettisham Clay) local impedence of water flows
- Underlying Kimmeridge Clay effectively prevents any • downward water penetration
- Groundwater discharge zone resulting in a chain of • wetlands from Heacham running south

Groundwater flow

Peat

Kimmeridge Clay

Chall

West Norfolk's ancient heath and wetland chain

- Groundwater discharging from base of Greensand Ridge created a chain of wetlands
- Probably mostly still in reasonable condition in late 1800s
- Dramatic reduction and degradation in 1900s with few still functional
- But...potential to restore!

and the All

Adapted from www.geologyviewer.bgs.ac.uk

Effect of geology on past land use – Common land

- Common land generally the poorest, least productive soils
- Faden's map (1797) commons follow Greensand outcrop
- Geology and landforms also influence placement/development of settlements
- Note how prominent the river is heading out of the Gayton springs

ALNE DO. AL

Greensand ridge commons

Common land change over time

Faden's map (1797)

Common land in present day

Habitat/landuse change 1797 – 1880s

Habitat change 1880 - 1947

1947 - Northern boundary of parish (Leziate Fen)

Habitat change 1947 - present

- Drainage of fens
- Neglect
- Quarrying
- Atmospheric pollution and climate change

that be when the second

Marsh Clubmoss Lycopodiella inundata

All man > 10 and 11

An Endangered species which is rapidly heading towards local extinction in lowland England

Red-backed Mining Bee Andrena russala

Just two sites in Norfolk, based on two specimens I caught at Bawsey and one from Courtyard Farm, Ringstead.

Post-glacial relict species - Bilberry Mining Bee Andrena lapponica

All man 2 10 may sheer

Post-glacial relict species – Bilberry bumblebee Bombus monticola

All man 2 M as she

As be

20

NBN Atlas, Map data C OpenStreetMap, imagery C CartoDB

Post-glacial relict species - Little Shaggy Moss Rhytidiadelphus loreus

NBN Atlas, Map data © OpenStreetMap, imagery © CartoDB Sourced from www.nbnatlas.org.uk

Saving Norfolk's Wildlife for the Future

Mill man 1 1 mar Mark

Exceedingly rare wetland species – Dark Club Clavaria greletii

Saving Norfolk's Wildlife for the Future

tha 🖢

Very restricted UK distributions – Small sandpit mining bee Andrena argentata & parasite Bear-clawed nomad bee Nomada baccata

a he was at a water Will

Wildlife TRUSTS

24

Regionally scarce heathland species

Broad-bordered Bee-hawk Moth

Maiden's Blush

25

Bare ground specialists

as he was at a more MAR

Early Colletes Bee – a recent colonist responding to climate change. Adapting to climate change requires a network of connected sites for species to enable species to shift through the countryside

26

Atmospheric pollution – acidification and nitrogen compounds

- N compounds originating from factories and agriculture are transported in atmosphere and fall as rainfall.
- Inputs far exceed tolerance thresholds for semi-natural habitats.
- This results in the spread of nitrophiles at the expense of less competitive species.

27

Peatland restoration techniques - Tussock stripping

Atmospheric nutrient enrichment results in grassdominated monocultures

28

Tussock stripping removes nutrient accumulation

Recolonisation of stripped area by a wealth of mire specialists

Restoring habitats and species

- The 'West Norfolk Nature Network' and 'North-West Norfolk Coast' projects been awarded funding through the second round of the Landscape Recovery scheme
- Defra Peatland Recovery project (Leziate Fen)

Will allow 🔍 ddy and she was

- Direct management RSPB, NWT
- Higher Level Stewardship schemes
- Influencing key local landowners

Thank you!

Any questions

Weller Marine

Leziate Parish Solid Geology

Leziate Parish Superficial Geology

All man 24 mar she

Peatland restoration techniques – Peat pool creation

Peatland restoration techniques – mire mowing

Mire & Fen Restoration results

35